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A B S T R A C T   

We aimed to develop and validate a new graph embedding algorithm for embedding drug-disease-target net-
works to generate novel drug repurposing hypotheses. Our model denotes drugs, diseases and targets as subjects, 
predicates and objects, respectively. Each entity is represented by a multidimensional vector and the predicate is 
regarded as a translation vector from a subject to an object vectors. These vectors are optimized so that when a 
subject-predicate-object triple represents a known drug-disease-target relationship, the summed vector between 
the subject and the predicate is to be close to that of the object; otherwise, the summed vector is distant from the 
object. The DTINet dataset was utilized to test this algorithm and discover unknown links between drugs and 
diseases. In cross-validation experiments, this new algorithm outperformed the original DTINet model. The MRR 
(Mean Reciprocal Rank) values of our models were around 0.80 while those of the original model were about 
0.70. In addition, we have identified and verified several pairs of new therapeutic relations as well as adverse 
effect relations that were not recorded in the original DTINet dataset. This approach showed excellent perfor-
mance, and the predicted drug-disease and drug-side-effect relationships were found to be consistent with 
literature reports. This novel method can be used to analyze diverse types of emerging biomedical and 
healthcare-related knowledge graphs (KG).   

1. Introduction 

Drug repurposing (also known as drug repositioning) is the process of 
applying a known drug with specific therapeutic indication to another 
disease [1]. It has advantages over traditional drug discovery methods in 
that it can significantly reduce the cost and time required for drug 
development since the known drugs have already demonstrated safety in 
humans. Recently, we have conducted a bibliometric review of drug 
repurposing [2] by examining over 25 million articles in PubMed. We 
found that over 60% of the ~35,000 drugs or drug candidates identified 
in the study have been tested in more than one disease. Close to 200 
drugs have been tested in over 300 diseases each. Some efforts have 
yielded unexpectedly good results for novel therapeutic targets. Thus, 
drug repurposing is a very powerful strategy in starting new drug dis-
covery programs especially for rare or understudied diseases. 

Various experimental and computational techniques have been 

employed for drug repurposing. One common approach is the experi-
mental high throughput screening (HTS) of FDA-approved drugs, e.g., 
those from Prestwick Chemical Library® (Prestwick Chemical, Illkirch- 
Graffenstaden, France) against a novel biological target of interest that 
is considered relevant to the new disease. Conversely, computer-aided 
drug discovery/design (CADD) techniques have been employed to 
conduct virtual screening of known drugs or drug candidates. For 
example, if the 3D X-ray structure is available for the target implicated 
in the disease under investigation, docking of existing drugs to the target 
structure can be used [3]; alternatively, if a new target is identified for a 
disease and it is similar to the targets of known drugs, these known drugs 
can then be experimentally tested for use against the new disease. The 
target similarity can be based on protein sequences or 3D structure 
alignment [4]. Ligand-based similarity search as well as QSAR (Quan-
titative Structure-Activity Relationship) modeling were also reported to 
be of value in identifying FDA-approved drugs for repurposing [5,6]. 
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Another systematic strategy for drug repurposing is based on 
comprehensive analysis of structured chemical biology databases with 
known relationships among drugs, targets and diseases. Examples of 
these databases are DrugBank [7], Chem2Bio2RDF [8], Pharos [9] and 
ROBOKOP [10]. These databases are either stored as knowledge graphs 
(KG) [10] or as semantic triples [8] that can be systematically explored 
to discover hidden relationships and predict new ones. Graph embed-
ding technologies such as Node2Vec [11] and Graph2Vec [12] have 
been developed in recent years and some of them have been employed in 
biomedical research [13]. Most of these technologies were developed to 
handle homogeneous networks and have limitations to be extended to 
heterogeneous network analysis. For example, a support vector machine 
(SVM) was applied [14] for finding new interactions in drug-target 
networks on a bipartite graph. Other representative approaches that 
integrate heterogeneous network information for drug repurposing can 
be found in [15–18]. These methods base their predictions on estab-
lished drug-drug similarity, target-target similarity as well as known 
drug-target associations. Technically, these are not node/graph 
embedding methods in that they do not derive node embedding from the 
network itself; rather, most methods are based on structures of the 
drugs, and sequence-based embedding of the targets. 

DTINet, a unique method for drug repurposing based on integrated 
heterogeneous network data, has been recently published [19]. It in-
tegrates a variety of drug-related information to construct a heteroge-
neous network, and then employs a compact feature learning algorithm 
to obtain a low-dimensional vector representation of nodes (drugs and 
proteins). It utilizes a set of known drug-target associations as the 
reference to find the best projection from drug space onto the protein 
space, such that the projected feature vectors of drugs are close to the 
feature vectors of their known targets. During prediction, DTINet infers 
new drug-target relationships for a drug by sorting its target candidates 
based on their proximity to the projected feature vector of this drug in 
the projected space. The predicted drug–target links can be further 
analyzed and experimentally validated. The authors have compared 
DTINet with other contemporary methods for drug-target interactions. 
In a ten-fold cross-validation, performance of each method was assessed; 
and DTINet has performed better than other methods based on the 
chosen metrics. Several predicted drug-target interaction pairs have 
been experimentally tested and validated. 

The success of DTINet in modeling and predicting new drug-target 
interactions has inspired our work in developing a graph embedding 
algorithm for drug repurposing. For this purpose, we have utilized the 
basic framework of TransE [20] and adapted it to analyzing drug- 
disease-target network data. Here, entity relationships are represented 
as vector translations in the embedding space: if a relationship is true, 
the embedding of the object entity should be in close proximity to the 
embedding of the subject entity plus the relationship vector. It takes the 
heterogeneous network (i.e. knowledge graph) data, generates node 
embedding and conducts link prediction in a self-consistent fashion 
without the need to generate drug embedding and target embedding 
prior to learning the mapping between the drug space and the target 
space in separate steps [19]. Thus, the embedding in our method is 
customized to the link prediction itself, and affords the potential to 
improve the predictive power of this approach. 

The aims of this paper are four-fold: (1) devise and describe a new 
algorithm for embedding knowledge graphs that capture drug-disease- 
target relationships; (2) assess the performance of the new algorithm 
compared to previously published results; (3) employ the new embed-
ding models to predict unknown relationships among drugs and dis-
eases; and finally (4) validate the predictions via retrospective literature 
and web search to determine if the new relationships predicted by the 
model constitute viable hypotheses for drug repurposing or adverse side 
effects. 

2. Materials and methods 

In Fig. 1, we have outlined the overall workflow of this study. First, it 
extracts true triples from the DTINet dataset. By definition, in a true 
triple all three associations among a drug, a disease and a target are 
known in the DTINet dataset. Missing any one association would render 
the triple an unknown triple. Second, the DDTE algorithm would 
generate embedding vectors for the drugs, the targets and the diseases so 
that overall the vector of a drug plus the vector of the associated disease 
is in proximity of the vector of the target. Finally, the output of DDTE 
includes the optimized embedding vectors for the drugs, the diseases 
and the targets as well as a set of predicted triples ranked according to 
their predicted scores. Details are described below. 

2.1. Dataset 

The DTINet data was originally from DrugBank [7], CTD [21], HPRD 
[22], and SIDER [23], where the drug nodes were extracted from 
DrugBank [7], the protein/target nodes from the HPRD database [22] 
and the disease nodes from the Comparative Toxicogenomics Database 
[21]. Side effect nodes and drug-side effect relations were extracted 
from SIDER [23]. The dataset captures known target-disease, disease- 
drug, target-drug, protein-protein, disease-disease and drug-drug asso-
ciations as (0,1)-matrices [19]. These data matrices (available at https 
://github.com/luoyunan/DTINet) have been downloaded. We have 
created semantic (drug-disease-target) triples such that the subject is a 
drug, the predicate is a disease, and the object is a protein/target. The 
criterion for generating such a triple is as follows: for a drug Di, a disease 
D’j, and a target Tk, when and only when all three associations are 
known in the above data matrices, the triple Di-D′j-Tk is considered to be 
a true known triple; missing any connection in the triple renders it an 
unknown triple. The whole set of triples {Di-D’j-Tk} constitutes the 
positive samples for DDTE. 

2.2. The embedding algorithm 

The main motivation of our work is to create a self-contained 
embedding and link prediction method that takes as its input the het-
erogeneous network (i.e. knowledge graph) and optimizes a custom 
designed loss function to ensure that the resultant node embedding 
vectors (for drugs, proteins and diseases) can be used to effectively 
model the known relationships among the triples of drugs, diseases and 
targets. The algorithm does not require pre-calculating node features for 
drugs, proteins and diseases. The node features (embedding vectors) are 
the results learned directly from the network/graph structure itself. This 
approach can afford better prediction of missing links. We also aim to 
avoid the requirement of conducting a separate step of supervised 

Fig. 1. Overall workflow of this study.  
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machine learning. The dynamic nature of the graph embedding algo-
rithm implies that node embedding is not intrinsic to the nodes. Other 
methods [15–18] need to calculate drug features based on their mo-
lecular structures and protein features by their sequences, while our 
embedding approach can adapt to the network structure itself. 

The DTINet dataset can be considered as a knowledge graph (KG), 
which is formally defined as follows: Let E = {e1, e2,⋯} be a set of en-
tities including drugs and proteins. They are the nodes of the graph, and 
R = {r1,r2,⋯} be a set of all relation types, which are the edge labels in 
the graph. The graph can also be equivalently viewed as a set of triples. 
The format of a triple is (s,p,o), which is (subject, predicate, object), where 
the subject (drug) and the object (target) are entities (i.e., nodes), and 
the predicate (disease) is the relation type. 

The set of all known triples in the dataset, denoted as X(s,p,o) or 
simply X , is considered to be the positive samples by this algorithm. 
Since an added set of negative samples has been successfully used to help 
optimize a model to efficiently reduce the cost function (cf. equation 
(4)), we have adopted a similar negative sampling approach. The set of 
negative samples X’(s,p,o) is defined as follows: 

X’
(s,p,o) = {(s’, p, o)|s’∊E } ∪ {(s, p, o’) |o’∊E} (1)  

where E is the set of all the entities in the dataset; s, p, o are the subject, 
predicate and object of a triple, respectively. For each known triple in 
the original set, we create a set of negative samples by replacing the 
subject s with an entity in E as the new subject s’; or replacing object o 
with a random entity in E as the new object o’. These negative samples 
have not been in the original data set; in other words, the intersection of 
the original set of positive samples X(s,p,o)and the generated set of 
negative samples X’

(s,p,o) is empty. 
Note: negative sampling is a widely used technology to help with 

optimizing the loss function in this class of algorithms [20]. In a typical 
machine learning study, one explicitly creates positive and negative 
samples in roughly equal proportions. In DDTE (as well as TransE) al-
gorithm, however, this balance is already ensured in the calculation of 
the loss function (equation (4)). A close analysis of the loss function 
reveals that for each synthetic negative sample, the algorithm includes 
its contribution together with the corresponding positive sample from 
which the negative sample is generated. In other words, each positive 
sample is used as many times as there are negative samples introduced. 
Thus, the apparent imbalance issue is dealt with in the loss function. 

The algorithm DDTE was inspired from knowledge graph embedding 
models named TransE [20] and ContE [24]. In TransE, a predicate is 
regarded as a translation from a subject vector to an object vector. When 
a triple (subject, predicate, object) holds true, TransE trains the model to 
represent features of the entities (drugs, proteins) and the predicate in a 
low dimensional vector space and to make the summed vector of the 
subject s and the predicate p to be as close as possible to the vector of the 
object o. DDTE has been developed similarly in the embedding space for 
drug-disease-target prediction as follows. 

The model is trained so as to make vs +vp ≈ vo for each known triple 
(s, p, o) where vs, vp, vo ∈ Rk are k-dimensional vector embedding of the 
subject s, the predicate p, and the object o, respectively. When a triple is 
(s, p, o) in the positive set X, vo should be close to vs +vp ; otherwise, 
vs +vp should be distant from vo. To calculate the distance (dissimilarity) 
η()between two embedding vectors, we use the L1-norm (equation (2) 
and (3)): 

t = vs + vp (2)  

η(s, p, o) =
∑k

i=1
|t[i] − vo[i]| (3) 

Here, t is sum of the two vectors (subject and predicate), and k in-
dicates the dimensionality of the vectors. The following margin-based 
loss function is employed as the objective function in this algorithm: 

L =
∑

(s,p,o)∊X

(
∑

(s’ ,p,o)∊X’
(s,p,o)

max
(
0, γ + η(s,p,o) − η(s’ ,p,o)

)
+

∑

(s,p,o’)∊X’(s,p,o)

max(0, γ

+ η(s,p,o) − η(s,p,o’)))

(4)  

where, γ > 0 is the margin parameter, η(s, p, o) is the dissimilarity be-
tween vs +vp and vo for the positive set X , η(s’ ,p,o) is the dissimilarity 
between vs’ + vpand vo for the corresponding negative set of triples; and 
η(s,p,o’) is the dissimilarity values between vs + vpand vo’. The mini-batch 
gradient descent method with AdaGrad [25] is used as the optimization 
algorithm to minimize the loss function (equation (4)), resulting in the 
optimized embedding vectors for all subjects, predicates and objects in 
the dataset. Our chief reason for choosing the L1-norm for distance 
calculation is its known robustness against outliers in a dataset, which is 
the case for typical systems chemical biology datasets that are often 
pulled together from different data sources. 

2.3. Model performance statistics 

To validate and test the predictive performance of our embedding 
model, we shall define a scoring function for any given model-predicted 
triple (s, p, o). The prediction score is ψ(s = ei|p,o), for all ei∊E or ψ(o =
ei|s,p), for all ei∊E, where the score roughly corresponds to the proba-
bility of each missing subject or missing object. There are two kinds of 
predictions: (1) subject predictions: given a known link between a 
predicate p and an object o and infer missing subjects s; and (2) object 
predictions: given a known link between a subject s and a predicate p, 
infer missing objects o. 

For subject predictions, the following score function is used: 

ψ(s = ei|p, o) = − η(ei ,p,o) for ∀ei∊E (5) 

For object predictions, the following score function is used: 

ψ(o = ei|s, p) = − η(s,p,ei)
for ∀ei∊E (6) 

All predictions are ranked according to the scores to find the N 
highest scoring entities, among which the correct predictions are 
defined as the hits. Thus, Hits@Nvalues are a good measure for the model 
performance and were calculated in this study. Another more robust 
statistical measure for model performance is obtained from the Mean 
Reciprocal Rank (MRR), which is computed as follows: 

MRR =
1
|Q|

∑|Q|

i=1

1
ranki

(7)  

where, Q is a set of test triples, and ranki is the rank position of the true 
answer for the i-th triple. A higher MRR value indicates a better model. 

Hits@N is the hit percentage of true samples in a test set being 
ranked by a model within the top N positions against a set of decoy (i.e. 
negative) samples. This metric reflects how well a model ranks a true 
sample relative to decoy samples. 

To calculate Hits@N for a predictive model (either a DTINet model 
or a DDTE model), a set of decoy samples is generated from each of the 
true samples in a test set. For DDTE, the true samples are those DDT 
(drug-disease-target) triples in the test set; for DTINet, the true samples 
are the unique drug-target (DT) pairs extracted from those triples. In 
both cases, the score of a true sample is compared with the scores of 
respective decoy samples to obtain the ranks of the true sample relative 
to decoy samples. The subtlety is that DT-pairs are scored in the case of 
DTINet and DDT triples are scored in the case of DDTE. However, the 
actual calculations of the Hits@N for DDTE and DTINet are in fact 
consistent. 

Calculation of Hits@N for a DTINet model. (1) For each true DT-pair, a 
set of decoy drug-target (DT) pairs is generated by combining the drugs 
and targets available in the test set being considered. The drugs and 
targets are crossed-coupled, with known DT-pairs removed, to obtain 
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the decoy samples. (2) The known DT-pair and the decoy DT-pairs are 
then scored by a DTINet model and ranked from best to worst. (3) The 
ranking of the true DT-pair is recorded. (4) Steps (1) to (3) are conducted 
for every true DT-pair in the test set. Finally, (5) The percentage of times 
when the true DT-pair is ranked within top 1, top 3 and top 10 are 
calculated for Hits@1, Hits@3 and Hits@10, respectively. 

Calculation of Hits@N for a DDTE model. The procedure to calculate 
Hits@N is fundamentally the same as that for DTINet. (1) We generate a 
set of random combinations of DDT-triples for each true triple in the test 
set by *holding constant* the disease node in the triple while varying the 
drugs and targets, replacing them with drugs and targets in the test set. 
These triples, minus true triples, are used as the decoy samples. (2) For 
each true triple as well as the decoys, we calculate their scores and all 
triples are ranked from best to worst. (3) Then the ranking of the true 
triple is recorded. (4) repeat (1) to (3) for all true triples in the test set. 
Again, (5) the percentage of times when the true triples are ranked 
within top 1, top 3 and top 10 are calculated as Hits@1, Hits@3 and 
Hits@10, respectively. 

In addition to MRR and Hits@N metrics, we have also calculated 
AUROC (Area Under Receiver Operating Characteristic curve) and 
AUPRC (Area Under Precision-Recall Curve). These two standard met-
rics reflect overall or averaged performance of a model while MRR and 
Hits@N assess the algorithm’s ability for “early recognition” of inter-
esting predictions. This issue has been recognized in both bioinformatics 
and cheminformatics applications [26,27]. PRC curves are especially 
good for showing the trade-offs between precision and recall rates. 
Together, these metrics afford more comprehensive assessment of a 
predictive model. 

2.4. Hyperparameters optimization 

The effectiveness of our algorithm depends mainly on four hyper-
parameters described below. Random search approach was adopted to 
find optimal values for them covering the following ranges: 

κ − the dimensionality of the embedding space; the range is{60, ⋯,

200}
γ − the margin parameter in loss function (equation (4)); the range is 
{0.1,⋯,2.0}
λ − the learning rate; the range is {0.001,⋯,0.2}
b = the batch size; the range is {60,⋯200}

Note that λ (the learning rate) and b (the batch size) are parameters 
of the mini-batch gradient descent optimization algorithm adopted for 
this study. 

2.5. Empirical evaluation protocol 

The characteristics of the DTINet dataset [19] are given in Table 1. It 
was converted into triples, which were then randomly split into 60% as 
the training set, 20% as the validation set used to determine the optimal 
hyper-parameters, and 20% as the hold-out test set. For 5-fold valida-
tion, we shuffled the set of all triples randomly five times, and then each 
of the shuffled sets is split into training (60%), validation (20%) and test 
(20%) sets with the same ratios. Thus, five training, validation and test 
sets have been created for the 5-fold cross-validation experiments. Each 
training set was used to build a DDTE embedding model; each 

corresponding validation set was used to optimize the parameter setting; 
and each test set was used to test the model and generate the perfor-
mance statistics reported in the results section. 

3. Results 

3.1. Optimized hyper-parameters 

Before conducting the model performance experiments, we first 
select the optimal values for the four hyper-parameters (cf. METHODS). 
The validation sets were used to do so. The optimal values were found 
based on MRR results obtained with the validation sets. For this dataset, 
the optimal hyperparameters were (κ : 140,γ : 1.5,λ : 0.082,b : 140), and 
they were used throughout all models reported in this paper. 

3.2. Model performance statistics 

5-fold cross-evaluation experiments were conducted as follows. The 
whole DTINet data set was first shuffled five times to form five randomly 
ordered data sets, each of which was divided into training (60%), vali-
dation (20%), and test sets (20%). Each training set had 118,203 known 
triples. There were 39,400 known triples in the validation set and 
39,400 known triples in the test set. 

To evaluate DDTE embedding model, we computed the scores of 
triples (s’, p, o) for ∀s’ ∈ E, and then rank all of these triples by the scores 
in decreasing order (i.e., the rank of a triple that has the highest score is 
1). Likewise, we computed the scores of triples (s, p, o’) for ∀o’ ∈ E and 
rank all of the scored triples similarly in decreasing order as well. 

To measure the quality of the models, we use MRR as defined above 
(cf. METHODS). We also report ˝Hits@1,3, 10˝ , which indicates the 
number of correct triples that appear in the top 1, 3, and 10 predictions. 

Table 2 shows the 5-fold cross-validation experimental results ob-
tained for this dataset. We ran 5-fold cross-validation and compared it 
with the original DTINet model [19] as the baseline. The table shows 
that for the prediction of the five test sets, our model outperformed the 
DTINet model’s baseline. Our model’s average MRR performance on 
DTINet data was around 0.80 while that of the DTINet model was about 
0.70. Hits@N also indicated that DDTE performed better than corre-
sponding DTINet models for the same datasets. 

Since DDTE models score drug-disease-target triples and DTINet 
models score drug-target pairs, one may wonder how we can use Hits@N 
to compare the two different types of models. To better understand it, we 
should take a closer look at the way Hits@N is calculated. The fact that 
we hold the disease constant in a true triple when substituting the 
drugs and targets to generate decoys for a DDTE model (cf. Methods) 
allows us to derive the Hits@N that indicates where a true DT-pair (in a 
triple) ranks relative to the DT-pairs in the decoy triples. As a result, both 
DDTE model and DTINet model score DT-pairs when comparison is 
made to obtain the Hits@N (as well as MRR) metrics. The only 

Table 1 
Characteristics of the DTINet Dataset.  

Protein 1,493 
Disease 5,603 
Drug 708 
Training triples 118,203 
Validation triples 39,400 
Test triples 39,400  

Table 2 
Test Results on 5-Fold DTINet Data.   

MRR Hits @ 1 Hits @ 3 Hits @ 10 

DDTE (fold 1) 0.80 68.50 89.70 98.55 
DTINet (fold 1) 0.71 61.33 78.25 88.63 
DDTE (fold 2) 0.79 67.04 89.48 98.56 
DTINet (fold 2) 0.70 60.51 77.01 88.21 
DDTE (fold 3) 0.79 66.77 89.61 98.58 
DTINet (fold 3) 0.70 60.01 76.89 88.10 
DDTE (fold 4) 0.79 66.52 89.32 98.46 
DTINet (fold 4) 0.72 61.99 78.47 88.95 
DDTE (fold 5) 0.80 67.86 90.18 98.66 
DTINet (fold 5) 0.70 59.88 76.81 88.02 

To compare DDTE and DTINet results, two sample t-tests have been performed 
on MRR, Hits@1, Hits@3 and Hits@10: the p-values are 1.52E-07, 1.01E-06, 
3.10E-07, and 2.90E-07, respectively. 
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difference is how these two models make their predictions. By design, a 
DDTE model takes advantage of the known disease node involved in a 
triple when scoring DT-pairs while a DTINet model does not utilize this 
information in its prediction. 

We have also calculated ROC curves and PRC curves (Fig. 2). For 
each test set, we have created a binary dataset that consists of the true 
triples in the test set and a set of unique synthetic negative samples. The 
proportions of true positives versus negative samples are 1:1, 1:5, 1:10 
and 1: all possible negatives in 4 respective datasets. These different 
datasets simulate different levels of imbalance between positive and 
negative samples, posing increasing levels of difficulty for the models. 
For all five test sets, when the proportion of negative samples increase, 
the AUROC remain steady. This phenomenon is also reported in the 
DTINet paper [19], indicating that ROC curves and AUROC may not be a 
sensitive metric to evaluate model performance in imbalanced datasets. 
On the other hand, AUPRC gradually decreases when the proportions of 
negative samples rise. From 1:1 to 1:5 to 1:10, AUPRCs are 0.99, 0.96, 
and 0.94, respectively. When all the possible negative samples are 
considered, AUPRC drops to about 0.39 for DDTE models. This trend has 
also been reported in the DTINet paper - they have reported that AUPRC 
dropped to about 0.3 or less when all possible negative samples were 
used; and other methods in their report got even lower AUPRC (~0.2 or 
less). Thus, DDTE models performed favorably based on AUPRC as well. 
Additional data regarding the 40 curves are included in the Supple-
mentary data file. 

DDTE appears to perform better than DTINet in terms of detecting 
true relationships among drugs and targets at top-ranking computa-
tional hits. The likely reasons for this could be as follows. (1) It utilizes 
data regarding the full connections among a triple of drug, disease and 

target. The information of true triples enables DDTE to capture impor-
tant hidden information (i.e. the drug node) which has not been taken 
into account in other methods (including DTINet). (2) Since the node 
embedding vectors are generated dynamically based on the network 
structure as opposed to prior calculations based on chemical structures 
and protein sequences, DDTE could adapt the embedding vectors to 
better establish the relationships among drugs, diseases and targets in 
response to the structure of the network/knowledge graph of a training 
set. Thus, we believe DDTE represents a new type of network-based drug 
repurposing approach that is complementary to other published ap-
proaches [15–19]. 

3.3. Identification of high scoring triples not recorded in the DTINet 
dataset 

As described above, five splits of the training data have been ob-
tained by randomly dividing the dataset into portions of 60%, 20%, and 
20% for the training, validation and testing sets, respectively. Thus, 
every such split led to a different model. We presented the statistics of all 
five models (Table 2); and it shows comparable performance among all 
them. Since one of the aims of this study was to demonstrate that some of 
the top scoring triples (that did not exist in the original DTINet dataset) 
could be found in the biomedical literature and/or the clinical trials 
reports, we believe that demonstrating this point using anyone of the 
models would serve this purpose. In a practical drug repurposing proj-
ect, one may examine all the predictions by five (or even more) models 
and the top (consensus) predictions may be tested as drug repurposing 
candidates. Thus, we simply chose to use the first model to demonstrate 
the utility of our models in predicting new triples. To do so, we have 
scored the missing triples created by replacing either the subject or the 
object in each of the 39,400 test triples in the first test set. As a result, we 
generated two sets of predicted triples (from object prediction and 
subject prediction, respectively) and scored them using Equations (5) 
and (6). The highest scoring one hundred (100) predictions were care-
fully examined by researchers in PubMed and Web search to assess the 
viability of the predicted missing relationships. For example, we have 
taken each of the top-20 ranking computational hits between a drug and 
a disease, and searched it in the PubMed to see if evidence is found in the 
published work that shows the potential relationship between the drug- 
disease pair. We also searched ChemoText [28] for the predicted drug- 
disease pair or drug-side effect relationship. If they are found in either 
PubMed or ChemoText, the pair is labeled as a viable hypothesis (either 
a potential drug repurposing candidate or a potential side-effect 
prediction). 

3.4. Literature validation of predicted new relations 

Due to the nature of the training sets, the relationships between 
drugs and diseases are not restricted to therapeutic ones. In fact, drug 
side effects are also included in the training set, and thus they are in the 
model-predicted new relations as well. The following are examples of 
the predicted relationships verified through literature (PubMed) and 
web search (Table 3). 

Fig. 2. Bar graphs of Areas Under ROC curves (AUROC) and Areas Under PRC 
curves (AUPRC). Note: AUROC and AUPRC data are based on the averages of 
five test sets. Standard deviations are small and not represented on the 
bar graphs. 

Table 3 
Predicted New Relations.  

Drug Name Affected Condition UniProt ID Reference 

New indications    
Propranolol Child behavior disorders P29317 [29] 
Mepivacaine Hypertension P07359 [31] 
Raltitrexed Colonic disease Q9UI32 [7]  

Side effects    
Bortezomib Gastroenteritis Q9UIC8 [33] 
Sulfasalazine Respiratory distress syndrome P00367 [34]  
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3.4.1. Potentially new therapeutic relations 
Here we discuss several examples that illustrate the potential utility 

of our approach as a novel drug repurposing tool. The first prediction is 
the association between Propranolol and child behavior disorders. 
Propranolol was initially developed and used for the treatment of hy-
pertension. Literature search has revealed that it could lead to signifi-
cant improvements in cognitive performance in children with autism 
spectrum disorders [29]. Therefore, this newly predicted relation is of 
interest providing support to using our models for predicting potentially 
new therapeutic applications of an old drug. The associated target is 
P29317 (ephrin type-A receptor 2). Although it is not known how Pro-
pranolol affects child behavioral disorder, it is known that ephrins are 
involved in brain disorders with memory impairment symptoms, 
including Alzheimer’s disease and anxiety. Ephrins may therefore 
induce cellular alterations mandatory for memory formation [30]. 

The second prediction is the association between Mepivacaine and 
hypertension. This drug is typically used as a topical anesthetic. It was 
known that anesthetics could cause cardiovascular side effects in hy-
pertensive patients. A literature search has found that Mepivacaine so-
lution without vasoconstrictor was safely used in hypertensive patients 
[31]. This fact was not included in the DTINet dataset, and again, this 
prediction appears to be supported by the literature data. The associated 
protein target is predicted to be P07359 (platelet glycoprotein Ib alpha 
chain); but it is not yet clear how this protein is involved in either topical 
anesthesia or hypertension. 

Our model also predicted a link between Raltitrexed and colonic 
disease. Based on DrugBank information, Raltitrexed was used for the 
treatment of malignant neoplasm of colon and rectum, as well as pleural 
mesothelioma [7]. This prediction does not appear to be new, but it was 
not included in the original training set; and thus, we considered this a 
successful prediction for a “new” use of an old drug. The associated 
protein is Q9UI32 (glutaminase liver isoform, GLS2), which is known to 
be highly expressed in cancers of the bladder, breast, cervix, colon, 
kidney, liver, lung, ovary, prostate, rectum, thyroid and thymus [32]. 

3.4.2. Potential side effects predictions 
We have predicted associations that imply side effects linked to 

specific drugs. For example, Bortezomib was predicted to be associated 
with gastroenteritis. This drug was originally used to treat multiple 
myeloma. According to literature search, it could indeed cause gastro-
intestinal problems [33]; however, this association was not present in 
our training set and thus considered as a new prediction. The associated 
protein target is predicted to be Q9UIC8 (leucine carboxyl methyl-
transferase 1); but no known information about this protein’s involve-
ment in gastrointestinal problems has been found. 

Another case was Sulfasalazine, which was typically used for the 
treatment of Crohn’s disease and rheumatoid arthritis. Our model pre-
dicted it to be associated with respiratory distress syndrome. In a liter-
ature search, it was found that this drug could indeed cause difficulty in 
breathing [34]. The associated protein is predicted to be P00367 
(mitochondrial glutamate dehydrogenase1); but its connection to res-
piratory distress syndrome is not yet known. 

3.5. Verification of predictions by ChemoText 

Aforementioned manual searches in PubMed have supported the 
predictions by our algorithm in that the predicted cases implicate either 
new drug-indication pairs or drug-side-effect associations (Table 3). To 
further systematically verify these associations, we have examined a 
publicly available Web server (http://chemotext.mml.unc.edu) named 
ChemoText [28], which has captured all the MeSH (Medline Subject 
Heading) terms and their relationships. It is capable of identifying 
known drug-disease-target relationships and infer missing links between 
drug-disease-target triangles. All five of our predicted associations have 
been found in ChemoText as follows. 

Propranolol is predicted by DDTE to be related to child behavior 

disorders while ChemoText has indeed documented the association be-
tween this drug and sleep behavior disorder. In another case, Mepiva-
caine has been predicted to be useful for hypertension, and ChemoText 
has also documented its association with hypertension as well. Finally, 
DDTE has predicted the link between Raltitrexed and colonic disease; 
yet again, ChemoText has documented its connection with colonic 
neoplasms. 

For the two cases of side effects, Bortezomib was predicted by DDTE 
to be associated with gastroenteritis, and ChemoText has documented its 
relation with gastrointestinal diseases as well. Finally, DDTE predicted 
that Sulfasalazine may have side effect of respiratory distress syndrome; 
A search in ChemoText also revealed that Sulfasalazine is indeed asso-
ciated with adult respiratory distress syndrome. 

4. Discussion 

We have conducted 5-fold cross-validation experiments to test the 
models built upon randomized training sets consisting of 60% of the 
total original set of triples in the DTINet dataset. The validation sets 
consisted of 20% of the total original set, which was used to find the 
optimal hyper-parameters to obtain the best models. These models were 
then used to predict the test sets consisting of another 20% of the 
original set of triples. However, once the optimal hyper-parameters were 
found, we could use 80% of the randomized dataset as the training and 
remaining 20% as the test set. This could further improve the perfor-
mance over what was reported herein. 

In addition to the above experiments, we have also employed the 
obtained optimal models to predict some of the original unknown 
(negative) samples to identify potential new relations among disease- 
drug-target triples. The identified drug-disease and drug-side-effect re-
lationships were consistent with manual literature findings. These 
findings demonstrated that this new algorithm was effective in identi-
fying potentially new relations. We have also searched in ChemoText, a 
web server that has captured algorithmically all known relations among 
drugs, targets and diseases published in PubMed based on MeSH terms. 
This has further supported our predictions. 

The DDTE method has been designed to find missing links (a.k.a. link 
prediction) in an existing network/knowledge graph dataset rather than 
to predict links among external nodes (drugs, diseases and targets) in 
other databases. In fact, because of its dynamic embedding nature, 
DDTE is not able to predict the links among external nodes (nodes that 
do not already exist in the training set). This algorithmic characteristic 
can be viewed as a limitation of this method compared to other methods 
in that they require independent feature generation based on molecular 
structures and protein sequences, which are more appropriate for pre-
dicting relationships among external nodes. However, we believe that 
DDTE’s network-specific dynamic embedding may have afforded it 
higher predictive power in detecting missing links among existing nodes 
because it explicitly takes into account the network/graph structure, 
while other methods do not do so. DDTE should be considered as com-
plementary to previously published methods. It works well in finding 
missing links in a given dataset, but does not aim to predict other drug- 
target-disease relationships among novel nodes in external datasets. 

In this presentation, we have studied only one of the test sets to 
predict potential unknown links among proteins, diseases and drugs. To 
get a more comprehensive evaluation, we could examine more test sets 
and find more unknown relationships that may be verified in the liter-
ature. This could find more verifiable relationships and afford additional 
repurposing hypotheses for future experimentation. 

As the predicted unknown relationships could be verified in the 
literature, they formally represent retrospective analyses that can be 
regarded as instances that validate our models and can be viewed as 
proof-of-concept studies. Further, we have also identified additional 
hypotheses about either novel therapeutic uses of existing drugs or their 
possible side effects (data not reported herein); these hypotheses await 
experimental assessment. 
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It is interesting to make a comparison between DDTE and several 
contemporary methods that have been published that integrated het-
erogeneous network data and build predictive models for predicting new 
drug-target relationships. Chen et al. [15] integrated three different 
networks: protein–protein similarity network, drug–drug similarity 
network, and known drug–target interaction into a heterogeneous 
network. It uses a random walk algorithm to infer new connections 
between drugs and potential targets. No prior knowledge of drug-disease 
relationships is directly modeled in the algorithm. They seek to predict 
drug-target interaction, with known drug-target interaction as the 
training set to conduct a supervised learning of a transformation matrix 
used to predict potential drug-target interactions. Fu et al. [16] imple-
mented a method that is similar to the above. Again, they employed 
known drug-target links from several data sources. Full connections 
among drug-disease-target triples were not explicitly employed in these 
methods. They do not predict drug-disease associations directly from the 
algorithm; rather, only drug-target interactions are directly predicted. 
Wang et al. [17] has reported a systematic approach to drug reposi-
tioning problem. A unique characteristic of their framework is that it 
automatically incorporates drug-target information into drug–disease 
association prediction. Their method does not require all connections 
(drug-disease, drug-target and disease-target) either. Similarly, Zheng 
et al. [18] developed a method of matrix factorization based on 
structure-structure similarity and target-target sequence similarity to 
establish relationships between drugs and targets. These methods rely 
on chemical structure similarity based on structural fingerprints and 
protein sequence-based similarity. The features of the nodes are pre- 
calculated based on structure and sequence information rather than 
derived from the network/knowledge graph structure. 

Most recently, Fahimian et al. [35] has published a paper on a 
technology called RepCOOL. It represents a different class of technology. 
It constructed nine drug-disease networks from different data sources as 
the training sets. Each pair of drug-disease relationship is represented as 
a 9-dimensional feature vector, which is quite different from that of 
DDTE. In RepCOOL, several supervised machine learning technologies 
are used in the downstream to build classification models as a separate 
step. 

DDTE, on the other hand, represents a very different class of methods 
and offers a complementary approach to the problem. In this method, 
(1) all node embedding vectors are NOT pre-calculated based on 
chemical structures and protein sequences; rather, node embedding 
vectors are derived from the network/graph structure that includes all 
connections among drugs, diseases and targets, which better captures 
the network structure in generating the embedding vectors/features; (2) 
DDTE includes explicitly all the connections among a drug, a disease and 
a target in the algorithm, laying the foundation for predicting drug- 
disease-target relationships directly as a result of the model prediction. 

Finally, it is also interesting to mention a whole new class of graph 
data analysis method called Graph Neural Network (GNN) [36]. Our 
method (DDTE) adopts the assumption that majority of the known drug- 
disease-target relationships should satisfy s + p = o, where s is the drug 
vector, p is the disease vector and o is the target vector. The node 
embedding vectors are optimized so that this condition is satisfied for as 
many known triples as possible. This algorithm explicitly captures the 
triple relationships in the embedding space in a supervised learning 
fashion. On the other hand, GNN [36] and MPNN [37] aim to learn, in 
mostly unsupervised or semi-supervised fashion, the internal network/ 
graph structure and map the node-to-node similarity relationships onto 
the embedding space. No known triple relationships are explicitly 
captured in these GNN (Graph Neural Network) models. The resultant 
node embedding vectors are often used in downstream machine learning 
modeling. Empirical comparisons between DDTE and GNN are currently 
beyond the scope of this paper but warrant future studies. 

5. Conclusions 

We have developed and validated a new biomedical knowledge 
graph embedding algorithm (DDTE). We found that this new approach 
enabled favorable performance in inferring novel drug-disease-target or 
drug-target-side effect relationships as compared to previously pub-
lished results using the same knowledge graph. New links among drugs 
and diseases or drugs and side effects were found in our analysis of the 
DTINet dataset, demonstrating the potential use of this algorithm in 
drug repurposing or side effect prediction research campaigns. 

We have analyzed only one chemical biology dataset, namely, the 
DNINet to demonstrate the value of the new graph embedding algo-
rithm. More knowledge graph databases have appeared in the literature. 
For example, Pharos [9] and ROBOKOP [10] have been published in the 
past two years. They can be converted into semantic triples in the same 
format as (s, p, o) triples. As the algorithm developed herein is of general 
utility, it can be applied to study these larger databases, which can 
provide much larger sets of drug repurposing hypotheses and add sig-
nificant values to these knowledge graph databases. 
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